
Whitepaper

© 2018 bZeroX, LLC



1

Abstract
bZx is built on Ethereum and integrated with the 0x protocol. It is the first 
fully decentralized, peer-to-peer margin funding and trading protocol. 

bZx is not itself an exchange, but a protocol that can be integrated into the 
current exchange infrastructure. Exchanges and relays are incentivized by fees 
denominated in the BZRX protocol token (BZRX) to offer decentralized margin 
lending and margin trading services. Assets are valued and liquidated via 
competing oracle providers. By decoupling the valuation and liquidation of assets 
from the protocol, the oracle marketplace approach allows competition to drive 
the oracle provider fee to its marginal cost while encouraging experimentation 
and flexibility.



Table of Contents

Phase I
	 Motivation
	 The Components of bZx
		  bZx.js Library
		  bZx Portal
		  bZx Smart Contracts
	 The Oracle
		  Design Decisions
		  Oracle Governance
Specification
	 The BZRX Token	
	 Token Governance
	 Broadcast Orders
	 The Order Object

Timeline

 

2
	 2.1
	 2.2
		  2.2
		  2.2
		  2.2
	 2.3
		  2.3
		  2.3

3
	 3.1
		  3.1
		  3.2
	 3.3

4



PHASE 1



Motivation
One of the persistent contradictions of the cryptocurrency space has been 
the theme of decentralized assets traded on centralized exchanges.

In the wake of the 0x revolution, a new generation of decentralized exchanges (DEXs) 
are taking root. These decentralized exchanges address some of the existing problems 
with older DEXs, while still lacking the capabilities of many of the leading centralized 
exchanges. Individuals looking to engage in margin lending or margin trading are still 
forced to funnel their liquidity to centralized token and coin exchanges, exposing them 
to an additional form of counterparty risk.

Counterparty risk is encountered when the risk of a third party defaulting jeopardizes 
the assets of an investor. Margin lending exposes the lender to counterparty risk both 
from the exchanges and the borrower. The specific type of avoidable counterparty risk 
incurred by lenders and borrowers using centralized exchanges is called custodial risk; 
allowing individuals to maintain control of the private keys to their wallets at all times 
obviates this risk. Lenders face additional counterparty risk from underwater borrowers 
who fail to be liquidated in time. 

Decentralized margin comes with significant technical challenges. The most significant 
challenge is the design of a reliable oracle that can match the settlement security of 
centralized exchanges. In the context of margin lending, the oracle problem is caused 
because Ethereum contracts are not natively aware of asset prices on or off the 
blockchain. If smart contracts can’t stay aware of asset prices on the open market, they 
can’t consistently force-liquidate borrowers on that market to protect lenders from 
adverse movements. The most serious obstacle to decentralized margin lending is being 
able to reliably and securely liquidate troubled positions. The bZx protocol serves as an 
on-chain solution to these challenges.

2.1



The Components of bZx

bZx.js Library
The bZx.js library is a promise-based asynchronous JavaScript library that contains all 
the functions needed to interact with bZx smart contracts on-chain. Software developers 
can use this library to easily integrate with and develop for the bZx protocol. Relays and 
exchanges will use this library to build an interface for margin lending and trading on 
bZx, providing a value-add to their customers. These relays will be able to add a funding 
tab, similar to many centralized exchanges. In the same way that 0x.js allowed relays to 
easily create a frontend for exchanges, bZx.js will do likewise for funding.

bZx Portal
The bZx Portal is a web-based decentralized application that serves as a frontend 
to the bZx protocol, utilizes the bZx.js library, and serves as a one-stop shop for 
individuals looking to interact with the protocol for margin lending and trading. There 
is no requirement to use the bZx Portal for lending or trading on bZx, but it provides a 
convenient access point for users that aren’t otherwise on an exchange or relay.

2.2

The initial release of the bZx Portal will 
be split into four sections:
1. A section for the lender and trader to 
make or take bZx loan orders.
 
2. A section for the trader to manage the 
loan once the funds are lent, including the 
opening of trades, the closing of trades, 
and ending a loan early.

3. A section for the lender to manage the 
loan once the funds are lent including 
reviewing how their funds are being used 
and requesting an interest payout.

4. A section for bounty hunters to manage 
open trades for margin liquidation, and to 
liquidate if needed.



bZx Smart Contracts
The bZx protocol is a series of smart contracts that facilitate on-chain margin lending, 
and the opening, monitoring, and liquidation of ERC20 token trades. The entry point 
for all state changing transactions with bZx is the bZx.sol smart contract. This acts as a 
controller of other sub-contracts that make up the various parts of the protocol, including 
bZxVault.sol, bZxTo0x.sol, and the custom Oracle contracts for trade management 
(discussed in Section 2.3).

Care was taken in contract design to allow for seamless future upgrades with minimal 
disruption, and protection of user funds. The decentralized governance aspect of 
upgrade management will be discussed later.

The interaction with the bZx smart contracts begins when a lending order is sent to 
bZx.sol. Whether a person wishes to lend funds or borrow funds, this lending order is 
generated when that person defines the loan parameters on a 3rd party relay (integrated with 
bZx.js) or on the bZx Portal directly. This order is broadcast through any medium, though 
most likely through a relay. Takers bring signed orders to the bZx contract, initiating 
the margin lending process. A series of competing oracle contracts form the basis of 
an oracle marketplace and can be selected by users based on their preference, as part 
of the order creation process. The oracle contract chosen is responsible for overseeing 
positions taken using that oracle, managing the price feed, and controlling liquidation 
logic. Any desired oracle can be chosen by the user when the order is created, as long 
as the oracle has been registered in the bZx Oracle Registry contract. Oracle contracts 
that make it into this registry will have their source code published and will have been 
publicly vetted and accepted through decentralized governance, ensuring they are safe 
and reliable. bZx intends to maintain a marketplace of these oracles, allowing for public 
rating, and providing a means to select an oracle that meets the public’s qualifications.

bZxVault.sol: An escrow contract for storing ether and tokens not involved in 
active trades.

bZxTo0x.sol: An interface for taking trades using the 0x Exchange contract. The 
contract can be easily upgraded later if ZeroEx makes breaking changes to 
their on-chain exchange.

Oracle_Interface.sol: An interface provided as a starting point for developing 
custom Oracle contracts that interact with the bZx protocol and make up 
the oracle marketplace. An inheriting contract must implement all provided 
function declarations to work properly with bZx. Though funds are escrowed 
in the bZxVault, trades are escrowed by the oracle, meaning the oracle and 
not the bZx protocol has sole discretion to withdraw or liquidate the funds 
within the constraints of the protocol logic.

2.2



The Oracle
Design Decisions
Oracles introduce a significant complication to the decentralized margin lending problem. 
Even if an oracle is decentralized and interfaces with on-chain price information, network 
congestion can pose a significant threat to its ability to liquidate a position in a timely 
manner. The approach bZx has chosen is to create an oracle marketplace where oracle 
providers compete, allowing providers and users to select the trade-offs tailored to the 
individual. This system will allow oracle services to be provided at the lowest possible 
fees with the highest reliability. Any individual or organization will be able to create their 
own oracle. If the oracle is successful, the creators will either profit from token schemes 
facilitating seigniorage or from fees on interest earned by the lender. An oracle provider 
can charge any fee they want, but individuals may choose not to use them if the fee is 
too high.

Our own flagship open-source oracle is presented here: bZxOracle. 
bZxOracle is fully decentralized and operates partially off-chain. When creating an 
order, an oracle provider must be specified. If the bZxOracle is specified, then anyone 
can call the liquidateTrade contract method and receive a bounty when the proper 
conditions are met. Support is provided at the protocol level to allow third-party oracles 
to impose whatever constraints necessary on when the liquidateTrade method can be 
called. With bZxOracle, bounty hunters keep track of all open trades taken using bZx, 
determining whether any have gone below margin maintenance. This pushes the most 
computationally intensive tasks off-chain. When a bounty hunter has determined that 
a position has gone below margin maintenance, they call into bZx to liquidate the trade 
with bZxOracle.

After the liquidateTrade method has been called, the bZx contract makes a call to the 
bZxOracle contract (fig.1) to determine whether the position has gone under margin 
maintenance. The bZxOracle contract pulls from the most liquid three decentralized 
exchange APIs. The average disagreement between each price provided by the API is 
calculated. The DEX which provided the number with the highest average disagreement 
is discarded and the two remaining DEXs are used in the calculation of the volume 
weighted average price. This is done to prevent temporary, erroneous prices from 
allowing a borrower to be wrongly liquidated. This also provides protection against 
bounty hunters seeking to maliciously liquidate orders to extract a greater sum of 
bounties. While more sophisticated outlier detection algorithms might seem preferable, 
we have opted for this method to limit gas costs. We will initially only be using the on-
chain price feed from KyberNetwork until other secure on-chain price feeds come online.  

2.3



When the liquidateTrade method is called for a trader’s open position, and the trade is 
confirmed to require liquidation, an on-chain trade is made to close the position. During 
times of high congestion, it becomes increasingly likely that any single transaction sent 
will be knocked out of the mempool and fail to be mined. Traders are familiar with 
this phenomenon during popular ICOs, where network congestion has prevented many 
individuals from successfully participating in a token sale. 

One of the principal design considerations for bZxOracle was to have it work in even 
extraordinary circumstances. Once an account is identified as being below margin 
maintenance, it is imperative that it is liquidated as quickly as possible with the fewest 
number of transactions required to be mined. This is why we crowdsource liquidation 
calls. This is also why we have designed the system to work without user intervention 
even during times of market crisis. 

We strive to make the contract as economical as possible with regard to gas usage. We 
are investigating the use of TrueBit to off-load DEX API calls and liquidation gatekeeping 
calculations off-chain. This is the architecture behind v2.0 of bZxOracle and continues 
to be an area of active research.

2.3

Figure 1. Simplification of the liquidateTrade method.

bZx.sol



Oracle Governance
In bZxOracle, a ten percent fee will be collected from the interest earned by lenders 
and will be used for several functions, including: decentralized governance, bounty 
hunter incentivization, gas fee refunds, and systemic risk insurance. By contrast, many 
centralized exchanges charge fifteen percent or more of the interest earned. Since  
bZxOracle will be competing in an oracle marketplace, market forces will eventually 
force the oracle fee down to the marginal cost of providing the service. We encourage 
individuals to fork the open-source code and compete with their own variant of our 
oracle if they believe they can deliver better results. For example, in times of low network 
congestion, a lender might feel comfortable using a fee-free fork of the code and being 
their own bounty hunter. While this forgoes the protection of a network of individuals 
crowd-sourcing transactions, this trade-off might be preferable for some lenders and 
borrowers. 

Bounty hunters will be paid a bounty to compensate them for the gas spent calling the 
contract and the resources spent monitoring margin account health off-chain. In order 
to establish the average price of gas on the network, we extract the gas price data from 
the takers bringing signed orders to the bZx contract. We use this data to update an 
exponential moving average (EMA) which represents the price of gas on the network. 
The higher the gas price used in prior transactions, the higher the bounty will be. This 
will enable the bounty to dynamically scale in sync with network congestion, ensuring 
that liquidation transactions always maintain priority in the transaction queue. If this 
bounty proves insufficient or excessive, it can be modified by the oracle’s decentralized 
governance mechanism discussed below.

There are two trade-offs we considered when setting the bounty size:
The first is that if the bounty is set too high, a race condition will cause bounty hunters to 
use a gas price far above what is necessary to be at the front of the transaction queue, 
burning gas to compete with other bounty hunters. This would create great deadweight 
loss, compensating miners far more than is necessary to process the transaction quickly. 
The second trade-off is that if the bounty is set too low, the average gas price used to 
process the transaction won’t be enough to make it past the transaction queue, causing 
liquidations to take too long or not be mined at all. After determining an upper bound on 
gas used by calls to the liquidateTrade method, the bounty will be set such that bounty 
hunters are incentivized to send transactions with a gas price slightly above the average.

2.3



The fees collected by bZxOracle will be tokenized and distributed to its users (fig. 2). Lenders 
and borrowers will receive Sugar (SUGR) tokens to compensate them for taker fees and 
gas. Bounty hunters will receive Sugar tokens as their bounty. This token will be used to 
decentralize governance of the oracle, giving the individuals invested in the network a 
vote in proportion to their usage. SUGR tokens are backed by Ether and redeemable for a 
fixed percent of the bZxOracle reserve. As bZxOracle collects more fees, the Ether reserve 
grows along with the value of the SUGR token. The distribution of the SUGR token will 
take strong inspiration from Ethfinex and their Nectar token. The SUGR token roll-out will 
be incremental, with the oracle initially distributing Ether to the lenders, borrowers, and 
bounty hunters.

The volatility of cryptocurrencies create a high risk that a cascade of margin calls could 
cause a flash crash. Part of the fees collected by bZxOracle will be set aside into a 
decentralized insurance fund denominated in Ether and BZRX token to protect lenders in 
the event of a black swan event. If many lenders have lost principal due to abnormal market 
circumstances, the holders of the Sugar token are incentivized to use the insurance fund 
to restore the principal of the lenders. This maintains the reputation of the network as a 
safe place to loan funds and safeguards the future revenue of the Sugar token. Part of the 
task of governance of the oracle is to decide what loan order parameters are insurable. 
It might be decided that providing loans for margin traders using leverage over a certain 
threshold are ineligible for the oracle’s insurance.

2.3Figure 2. Visualization of collected fee distribution.

DECENTRALIZED
INSURANCE FUND

REFUNDS FOR GAS 

COLLECTED ON THE INTEREST
EARNED BY LENDERS

10% FEE

SUGR
TOKEN

BACKED BY ETHER



Figure 3. Infographic of bZx protocol.

LENDER

DECENTRALIZED
INSURANCE FUND

REFUNDS FOR GAS 

BORROWER

PROVIDES ON-CHAIN
PRICE FEED

 
PROVIDES LIQUIDITY
FOR MARGIN CALLS

bZxTo0x.sol

TRADE ON 0x RELAYS
& MANAGE ASSETS

STORES LOAN FUNDS
AND COLLATERAL

bZxVault.sol

MONITORS 
bZxVault

bZxOracle

IDENTIFIES MARGIN CALLS

CALL LIQUIDATE()

INTERFACES WITH
ORACLE CONTRACTS

Oracle_Interface.sol

SETS ORACLE
PARAMETERS

bZxOracle.sol

COLLECTED ON THE INTEREST
EARNED BY LENDERS

10% FEE

SUGR
TOKEN

BACKED BY ETHER

CONTROLLER FOR ALL 
SUB-CONTRACTS

bZx.sol

BOUNTY
HUNTER



SPECIFICATION



3.1

The BZRX Token
The BZRX token is a utility token with two main functions:
	 1. The incentivization of order book aggregation by relays 
	 2. Governance of the bZx protocol 

The BZRX token functions for the bZx protocol much like the ZRX token functions for 
the 0x protocol. Both tokens coordinate networks of rational economic agents around a 
protocol. Both are used to facilitate continuous, decentralized updates to the protocol. 

Token Governance
The most common directions for governance in the space are Aragon and multi-signature 
wallet arrangements leading to a DAO. It has become clear that multi-signature wallets 
represent an unnecessary attack surface. On this issue we will continue to solicit feedback 
from the community. We are currently investigating the use of an upgradeable DAO. 
A Medium post detailing our plans for governance will be released prior to the crowdsale.



3.2

Name Data Type Description

bZxAddress address Address of the bZx smart contract.

makerAddress address Address of the maker (lender or trader) of 
the lending order.

loanTokenAddress address Address of the ERC20 token contract to be 
loaned to the trader.

interestTokenAddress address Address of the ERC20 token contract to be 
paid as interest to the lender.

collateralTokenAddress address Address of the ERC20 token that the trader 
put up as collateral.

feeRecipientAddress address Address of an exchange or relay that 
receives fees for aggregating the order.

oracleAddress address Address of oracle contract that conforms to 
the bZx Oracle interface.

loanTokenAmount uint256 Total units of the loanToken that will be 
loaned.

interestAmount uint256
Amount of interest that will be paid to the 
lender in interestToken units per 24 hour 
period the trade is opened.

initialMarginAmount uint256

The minimum percentage margin amount 
required for a trader to receive funding for 
their loan and for them to open new trades 
after receiving funding.

maintenanceMarginAmount uint256

The margin percentage amount at which a 
trader’s position is force liquidated if their 
initial margin falls to this level. This also 
returns the loanToken to the lender and 
ends the loan.

lenderRelayFee uint256 Total units of protocol token (BZRX) the 
lender pays to feeRecipientAddress.

traderRelayFee uint256 Total units of protocol token (BZRX) the 
trader pays to feeRecipientAddress.

expirationUnixTimestampSec uint256 Time at which the lending order expires 
(seconds since unix epoch).

salt uint256 A pseudo-random 256-bit salt to ensure a 
unique loan order hash.

signature bytes ECDSA signature of the above arguments.

Broadcast Orders



3.3

The Order Object
Initialization 
• Lender calls approve function authorizing bZx to move the loan token and BZRX 
token.

• Trader calls approve function authorizing bZx to move the collateral, interest, and BZRX token.

• Both lenders and traders can serve as maker or taker of a loan order.

Execution
1. The maker creates an order object using the bZx Portal or via a relay.

2. The order object is signed with maker’s private key to ensure the order cannot be altered.

3. The maker broadcasts the order object to relay or intended recipient via an arbitrary medium.

4. The taker intercepts the signed order object, presenting it to the bZx contract while 
passing parameters specifying the collateral token and quantity of the token to be 
borrowed, if not previously specified by the maker of the order.

5. The bZx contract verifies the maker’s ECDSA signature, the order parameters, and 
the order expiration, before moving the loan token and required collateral token to 
escrow in bZxVault. The interest owed over the lifetime of the loan is calculated and also 
moved into escrow in bZxVault. If the loan is canceled early, the remaining interest and 
collateral tokens revert back to the trader. Multiple traders can fill a loan order, until all 
“loanTokenAmount” is taken. This means that the bZx protocol allows for partial fills. 



4

JANUARY FEBRUARY APRIL

AUGUST
05

Tom Bean and Kyle J. Kistner 
conceive bZx, originally 
naming it broker0x. 
Whitepaper development 
begins.

SEPTEMBER
29

First Github commit in the protocol 
contracts code repository.

DECEMBER
20

Adrian Li joins the development team. 
Development of the bZx portal begins. 

MARCH
15

bZx debuts as Title 
Sponsor of TokenFest 
in San Francisco.

20
bZx protocol debuts 
its fully functional 
smart contracts onto 
the Ropsten Testnet

24
bZx portal is released. 
Order object creation 
and order filling are 
functional.

Manish Singh and 
Stani Kulechov join 
Advisory Board.

03

11

18

13

bZx officially announces. 
“Welcome to b0x” 
published on Medium.

bZx officially releases the 
whitepaper after five months of 
concurrent coding development. 

honestbonsai joins the development 
team, assisting in development of the 
bZx.js library.

bZx debuts at ETHDenver.

JUNE

bZx launches full website. 
Closed beta mainnet 
release of the bZx protocol. 

Security audits with zk-labs 
begins.

Purple Paper Development 
(a reference implementation 
in Haskell) begins

Kyle J. Kistner and Stani 
Kulechov begin brainstorming 
decentralized margin lending 
solutions while discussing 
ETHLend.

Tom Bean and Kyle J. Kistner 
begin discussing cryptocurrencies 
and margin lending, exploring the 
potential for a collaboration.

JULY
Development of iToken 
contracts begin.

MAY
01

bZx presale begins

15
The bZx portal allows users to fill 0x 
orders and make trades using 
KyberNetwork. Lenders can now 
monitor open loans.

25
The bZx.js library is finished, with 
all sections of the portal complete.  
The bZx portal now allows bounty 
hunters to monitor and liquidate 
bankrupt margin accounts. 

12
The bZx website 
launches.

10
Development of the 
bZx.js library begins. 

25
bZx sponsors 
ETHDenver, attracting 
initial attention.

AUGUST
Development of the 
bZx wallet SDK.

SEPTEMBER
Token governance 
development

OCTOBER
Oracle marketplace 
integration.

NOVEMBER
Cross-chain asset lending 
development begins.

Timeline



References
[1] Open Zeppelin. 2017. On the Parity Multi-sig hack.
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7

[2] Parity. 2017. The Multi-sig hack: a post-mortem.
https://blog.ethcore.io/the-multi-sig-hack-a-postmortem/

[3] Request Network. 2017. 
https://github.com/RequestNetwork/RequestVesting

[4] Vitalik Buterin. 2017. 
https://twitter.com/VitalikButerin/status/911218043761573889

[5] Jack Peterson. 2017. 
Missing links in the Ethereum development stack
https://www.youtube.com/watch?v=FPHXbJPVVaA

[6] Will Warren & Amir Bandeali. 2017. 0x: An open protocol for decentralized 
exchange on the Ethereum blockchain. 
https://0xproject.com/pdfs/0x_white_paper.pdf 

[7] Loi Luu. 2017. KyberNetwork.  
https://kyber.network/assets/KyberNetworkWhitepaper.pdf



© 2018 bZeroX, LLC

bZx.network t.me/b0xnet @b0xNet


